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Abstract, The configuration of self-avoiding polymer molecules terminally attached to a 
rigid boundary is resolved into loop, train and tail components on the basis of a convolution 
integral analysis. The expectation lengths (1,,,,), (ltr*,J and (I,,,,} and the component 
fractions are determined as functions of chain length and chain-plane interaction. In the 
case of zero chain-plane attraction there is good quantitative agreement with Monte Carlo 
estimates, although the predicted dependence of ( Iloop} upon chain length appears too 
strong. 

Results are also presented for hard sphere sequences as a function of chain-plane 
attraction when it is found that there is a progressive redistribution amongst loop and tail 
states, the train exponent remaining essentially unmodified over the range of interactions 
investigated. Exponent representations are proposed and compared with earlier analyses. 
The various component structures are discussed in terms of the interplay of entropic and 
energetic processes at the boundary. 

1. Introduction 

In a previous publication (Croxton 1986a) we presented the results of a Monte Carlo 
analysis of the configurational properties of terminally attached self-avoiding hard 
sphere sequences in the vicinity of a rigid plane. The analysis was conducted to 
complement the various lattice-based exact enumeration and Monte Carlo treatments, 
and in particular to identify any fundamental differences between the continuum and 
discrete representations. The Monte Carlo data were compared with the results of a 
previously reported iterative convolution ( IC)  approximation (Croxton 1984), itself a 
development of an earlier convolution ( c )  approximation (Croxton 1979a, b, c, 1981, 
1983). It is not appropriate to review those results here, except to say that a fundamental 
feature of the Montecarlo data was the development of a pronounced discontinuity 
and secondary structure in the segment density distribution normal to the rigid boun- 
dary, a feature unresolved in previous discrete and continuum analyses, but nevertheless 
predicted on the basis of the c and IC approximation (see discussion in Croxton (1985, 
1986a, b)). 

Thus encouraged, we present here an analysis of the detailed structure of the 
terminally attached sequence in terms of its resolution into loop, train and tail 
components, based on the convolution approximation. Whilst we generally find that 
the iterative convolution technique yields results in closer agreement with the simulated 
data, this technique is substantially slower than its non-iterative counterpart, and given 
the very large number of spatial distributions required in the present analysis, the use 

0305-44701861122353 + 15$02.50 @ 1986 The Institute of Physics 2353 



2354 C A Croxton 

of the simpler technique was enforced. In the case of zero chain-plane attraction, the 
quantitative and qualitative dependence of the component structures upon chain length 
are compared with the previously reported Monte Carlo analysis (Croxton 1986a); we 
also make comparative assessments with earlier analyses reported in the literature, in 
particular the recent off-lattice MC simulations of Higuchi et a1 (1983), the lattice-based 
statistics of La1 and Stepto (1977) and the non-numerical analyses of Roe (1965a, b) 
and Chan et a1 (1975). 

A comparison of the c and IC approximations in the context of the Monte Carlo 
determinations has already been reported (Croxton 1983,1986a). For present purposes 
a comparison of the c segment density distribution pc(z I N )  normal to the boundary 
and the Monte Carlo data is appropriate. We have seen, for example (Croxton 1983, 
figure 2, Croxton 1986a, figure 2(b)), that both the c and IC distril-utions are somewhat 
collapsed towards the boundary with respect to the Monte Carlo distributions, although 
pic( z I N )  is in better overall agreement. In particular pc(z I N )  substantially overesti- 
mates the desorbed component of the distribution (tails) resulting in a depletion of 
states in the vicinity of the boundary (loops, trains). Consequently, we anticipate from 
the outset an underestimate of the adsorbed components-loops and trains-- and an 
overassignment to the tail states. Whilst we believe the IC approximation would provide 
some appropriate reassignment of the component structures, such calculations would 
be prohibitively time-consuming. The present determinations are therefore conducted 
on the basis of the c approximation. 

We adopt the same approach outlined in an earlier publication (Croxton 1983) 
wherein the effect of a rigid plane is introduced by allowing the diameter of the first 
segment uo+ 00, whilst the remaining sequence of segments (1, . . . , N )  constitutes the 
chain proper. It was found that the configurational properties of the chain rapidly 
approached an asymptotic form with increasing a,, and in practice ao=64;  
ul, . . . , uN = 1 was adopted. 

Here the contiguous properties of the chain are expressed in terms of a binary 
representation wherein l (0)  represents contact (non-contact). Thus [ 100001 11001 rep- 
resents a 10 segment chain arising with probability Prloooo'llool, in which 

train 

loop tail 

Segmefit 1 is terminally attached to the boundary, segments 2-5 constitute a loop, 
segments 6-8 a train and segments 9 and 10 a tail. Loops may be readily identified 
as internal sequences of zeros, trains as sequences of ones and tails as terminal sequences 
of zeros. More particularly, the complete set of possible configurations adopted by 
the terminally attached chain may be enumerated in the form of a binary tree in which 
contact/non-contact is represented by an upwardldownward branch, respectively. 

Associated with a given binary branch of i bits, [ i], the probability Ptil is determined 
as follows. The normalised spatial distribution Z( Oi I N )  of segment i with respect to 
the boundary 0 may be resolved into contact/non-contact zones as shown in figure 
1. Here we adopt the contact criterion 

roi sj(a0+ ai) + 5 
roi >;(a,+ ai) + f 

contact 

non-contact 
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Contact Non- contact 
zone zone 

Figure 1. Resolution of the normalised spatial distribution Z( Oi 1 N )  into contact Z ' (  Oi I N )  
and non-contact Zo( Oil N )  components. The contact zone is arbitrarily set to be within 
a , / 1 6  of the boundary plane. 

with C = 0 . 0 6 2 5 ~ ~  which is necessarily fairly stringent if an adequate resolution of loop, 
train and tail processes is to be made, and this corresponds closely with the criterion 
for adsorption used in lattice calculations. However, Higuchi et a1 (1983) point out 
the effect of an arbitrary choice of 5 upon the resolution of the sequence into loop, 
train and tail states, and investigate a range 3 . 6 4 1 ~ ~  C 5 s  0 . 0 3 7 ~ ~  in their Monte Carlo 
simulations. As these authors point out, a meaningful choice of 5 is possible only for 
thinly absorbed sequences which is fortunately the case for our relatively short chains: 
our choice of 5 = 0 . 0 6 2 5 ~ ~ ~  closely corresponds to the most stringent criterion investi- 
gated by Higuchi et al. Undoubtedly substantially broader choices for the contact 
zone would result in a fundamental reassignment of states, and this is precisely the 
conclusion of these authors. The spatial distribution of the ith particle is, of course, 
sensitively dependent upon the configuration of the preceding sequence; this is indi- 
cated explicitly by writing P[i-l*ll and P[i-l*O1 respectively, given a specific preceding 
sequence [ i - 1 1  represented as a specific pathway through the tree to the current node. 

These conditional probabilities PLil are determined from the spatial distributions 
as follows (Croxton 1979a, b, c, 1983): 

z[i-l,i] (oj I O N )  = z[i-l,il 

which, once normalised, enables the contact/non-contact probabilities to be determined 
(equation (4)) .  H ( 0 )  = exp(-Q(O)/kT), where Q ( i j )  is the interaction potential 
between segments i, j .  The convolution recursively regresses through the factor 

(OilO, N-1) Z ( i ,  Nl1, N)H(O,  N ) d N  (2) 

(Oi IO, N - 1 )  to the end-to-end distribution z[i-l,i] 

(OjjO, l )=z[ i -* . i l  (Oil z[ i -  I , i ]  

where 

(0, i - l ) S ( i - l ,  i)d(i-1).  ( 3 )  (oi) = H( oj) z[i-Zi-11 I z[ i - l , i ]  

The S bonds in (3 )  ensure the sequential connectivity of the chain (Croxton 1979a, b, 
c, 1983). Thus Z[i-l*il recursively regresses through a specific contact/non-contact 
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sequence z[i-z,i-11 , . . . , Z [ ' ]  which are established through equations analogous to ( 2 )  
and embody the convolution of the appropriate sequence of contact/non-contact 
functions. We draw the reader's attention to the fact that the probabilities estimated 
here are unconditional with respect to the subsequent configurations adopted by 
particles ( i  + 1, . . . , N ) .  

The conditional probability of contact, then, of the ith segment in an N-mer, given 
the preceding configuration [ i - 13 is 

0.625u,+~(uo+u,) 

S(uc,+a,) 

p[i-l.ll  ( O i l N ) =  Z[ ' ] (  Oi 10, N )  droi (4) 

and of non-contact 

p[ i - I ,O l  (Oi 1 N )  = 1 - P['-' , ']( Oi 1 N ) .  

Since all configurations of the chain are represented on the binary tree, it follows that 
the probabilities at each order sum to unity, i.e. for a terminally attached 3-mer 

p l l l l I + p r l l O l + p [ 1 0 1 1 +  p[loOl= 1 

and in general 

complexions i 

which represents a criterion for the correct normalisation of the distributions. Finally, 
the conditional probabilities (4) and ( 5 )  relate to the contact probabilities of the ith 
segment: the probability of a particular configuration adopted by an N-mer is taken 
to be the product of the individual segment probabilities within the sequence 

Insofar as the P['-'*'] are conditional upon the structure of the preceding sequence, 
the product ( 6 )  only partially accounts for the interdependence of configurations and 
its use may be only justified a posteriori. However, (6) is likely to be a less serious 
approximation when configurations are primarily in the same classification (e.g. 
primarily tails). On the basis of Monte Carlo analyses (Croxton 1986a) we find that 
tails do account for the overwheming majority of configurations, at least for the case 
of zero chain-plane attraction. 

2. Results 

The development of loops, trains and tails within the chain are determined on the 
basis of systematic searches throughout the binary tree. As mentioned earlier, loops 
are identified as internal sequences of zeros, trains as sequences of ones and tails as 
terminal sequences of zeros. For any particular configuration we require their lengths 
to satisfy 

lloop + ltrain + Itail = /chain. (7) 
This is achieved provided we measure the lengths in terms of links rather than segments. 
Thus, for the 10 segment (9 link) configuration [ 100001 11001 we have lloop = 5, ltrain = 2, 
Itail = 2, summing to 9 as it should. 
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ON I N )  
(equations (4) and ( 5 ) )  and, in general, be characterised by a number nicbS of loops 
and n:X]n, of trains. Moreover, the configuration [NI will have a total length of loops 
Ll[,”,b, and a total train length L::?,,. Appropriately weighting and averaging over all 
configurations [ N I  yields the expectation or average quantities 

Aparticular conjiguration [ N I  of the N-mer will arise with probability 

(n loops )  = (n!oNob,PIN1(ONI NI) [ , ]  

(J%oops) = ( L \ : ~ S P [ ~ ] ( O N  1 N ) ) [ N ]  
and 

(8b) 
( n t r a i n s )  = (nKi!nsPIN1(ON I N ) ) [ N ]  

(Ltrainr) = (LK‘i!nsPIN1(ON I N ) ) [ N ]  

where ( . . denotes a weighted average over the set of configurations [ N I .  The 
average loop length within the chain then follows as (Lloop,)/( nloops) and similarly for 
trains ( Ltrai,,>/( ntrains), designated ( lloops) and ( ltrai,,) respectively. 

A tail, on the other hand, either does or does not terminate a configuration [ N I  
and accordingly is or is not included in the expectation probability of tail formation: 

(ntaiJ=(PIN1(ONl N ) ) [ N ]  
(8c) 

( I t a i l ) =  (L%lPIN1(ONI N ) ) [ N ] .  
Finally, the percentages of segments within a given sequence length involved in loop, 
train and tail formation are determined. These quantities will be of particular use in 
a comparative assessment of earlier results of Roe (1965a, b) and Simha et a1 (1953). 

We consider the results for three kinds of encounter separately below, each for the 
contact criterion 5 = 0 . 0 6 2 5 ~ ~ .  In particular, we investigate the development of tails, 
loops and trains at the boundary as a function of segment-plane attraction (Croxton 
1983): 

where cool = ;(ao+ vi) and E* = 0, 1 , 2 , 5 ,  representing progressively a more attractive 
chain-plane attraction. The geometrical features of hard-sphere interaction are pre- 
served within the chain itself. Unfortunately, there is considerable parametric diversity 
between the present calculations and the Monte Carlo estimates of Higuchi et a1 (1983) 
and La1 and Stepto (1977), and direct comparisons cannot be made. The latter authors, 
for example, consider tetrahedrally coordinated self-avoiding sequences on a regular 
lattice adsorbing from an athermal solvent and are investigated as a function of chain 
length and adsorption energy at the basal face of the half-lattice. The sequences are 
freely rotating with no trans-gauche conformational energy difference. Their reduced 
contact energies of E *  = 0.5,0.9 lie within our parametric range of interaction energies. 
However it should be emphasised that their sequences are not terminally attached, 
and direct geometrical comparisons between fixed valence bond angle and perfectly 
flexible sequences is not possible, even for the same number of links. 

The chain-plane interaction of La1 and Stepto develops only upon contact with 
the basal plane which may be regarded as ‘sticky’ ; our analysis and the MC estimates 
of Higuchi et a1 (1983) both utilise more realistic continuous interactions. However 
these latter authors assume an inverse cubic distance dependence for the segment-plane 
interaction. As Higuchi et al observe, for the range of reduced contact energies 
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investigated, the chain statistics are generally insensitive to the range of solvent 
parameters investigated and are irrelevant for present purposes. 

As we have shown elsewhere (Croxton 1983), geometric attrition of the accessible 
configurations of the chain in the immediate vicinity of the boundary is responsible 
for an entropic rise in the excess free energy of the chain p, taking the form of an 
effective repulsion away from the boundary. In the case of an attractive boundary, 
this positive excess free energy may be partially offset and ultimately reversed for 
sufficiently attractive interaction parameters. However, for the range investigated 
(Os E* s 5), the gradient of the free energy (dF/dz)  at the boundary is always negative: 
in other words, in the immediate vicinity of the boundary repulsive entropic effects 
are responsible for a small rise in the excess free energy as the chain approaches the 
boundary, even though the excess free energy itself may be negative. Since /I must 
be zero at large distances from the boundary, it follows that the free energy passes 
through a local minimum in the vicinity of the boundary, and this has been observed 
in a variety of previously reported systems (Croxton 1983), where it is responsible for 
the location of the principal peak in the segment density distribution, p(z 1 N ) .  

In the case of terminally attached hard-sphere sequences and zero chain-plane 
attraction, we anticipate the preferential formation of tails rather than loops since the 
latter implicitly presuppose the existence of adsorbed sequences. However, with 
increasing chain-plane attraction, entropic repulsion is progressively off set, predispos- 
ing the system towards a closer association with the plane, largely at the expense of 
tails. Indeed, the minimum in the free energy for all E* > 1 favours the formation of 
loops rather than adsorbed trains, although adsorption will undoubtedly increase with 
increasing attraction. Tails, however, continue to represent the major component of 
the interfacial structure for the range of chain-plane attraction investigated here. 

We now analyse the three classes of encounter with the plane-tails, loops and 
trains-in terms of these preliminary considerations. 

2. I. Tails 

The configurational structure of a terminally attached self-avoiding chain is primarily 
determined by the tail component, at least for E* = 0 (Croxton 1986a), and this appears 
to be confirmed experimentally for polyethylene oxide chains terminally anchored on 
polystyrene latex (Cosgrove et a1 1983, Cosgrove and Vincent 1986). For weak chain- 
plane attraction entropic processes ensure the total desorbtion of the terminally attached 
sequence, and this concurs with the E *  = 0.5 MC data of La1 and Stepto. With increasing 
attraction, however, a redistribution of tails + loops occurs, as is clearly apparent from 
figure 2, in agreement with the observations of La1 and Stepto. Unfortunately, Higuchi 
et a1 report loop, train and tail distributions only for E* = 2.83, their strongest interaction 
parameter. Both continuum analyses agree that ( Itails) increases linearly with chain 
length (adopting Higuchi’s most stringent contact criterion l=  0 . 0 3 7 ~ ~ )  even for the 
most attractive chain-plane interactions investigated. Whilst a similar lattice result is 
obtained by La1 and Stepto for E* = 0.5, their E *  = 0.9 result is virtually independent 
of chain length. This difference in behaviour we attribute to the ‘all-or-nothing’ 
interaction at the ‘sticky’ basal plane adopted by these authors against the continuous 
interactions assumed in the presence and MC analyses. Undoubtedly the Metropolis 
sampling is very different in the two cases, and in the case of strongly attractive lattice 
plane interactions samples will be strongly biased in favour of adsorbed rather than 
desorbed structures. 
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Figure 2. Percentage of self-avoiding terminally 
attached chains in the form of ( a )  tails, ( b )  loops 
and (c) trains as a function of chain length. [ =  
0.0625~. 

The results of the continuum analyses corroborate Roe's (1965a, b) analysis based 
on a divergent generalised partition function method, initially adapted for a chain 
molecule by Lifson (1964). It should be noted, however, that Roe's analysis neglects 
the excluded volume effect, except for the nearest-neighbour interaction at the junction 
between adsorbed and desorbed sequences. Clearly, theories which subordinate the 
presence of tails would appear incapable of providing an adequate description of the 
configurational behaviour of finite length sequences (Simha et a1 1953). 

For weak chain-plane attraction (O< E* < 1) we see that the fraction of the 
terminally attached chain in the form of tails increases with chain length N :  virtually 
the entire sequence is in the form of totally desorbed chain with almost negligible 
probability of loop and/or train formation (figure 2 ( a ) ) ,  and in this case the lattice 
and continuum analyses agree. The attrition in chain conformation involved in returns 
to the plane develops rapidly with N, and the associated free energy penalty ensures 
a growing fraction of the sequence in the form of tails with increasing chain length. 
Indeed, the thickness of the polymer layer is attributable almost entirely to the tail 
component. Roe (1965a) estimates that upwards of 70% of the sequence exists in the 
form of tails for all but the most strongly attractive chain-plane interactions. Whilst 
our estimate is somewhat higher, we point out that Roe neglects excluded volume 
effects which would be expected to further delocalise the sequence. However, we have 
anticipated from the outset that the convolution approximation consistently over- 
estimates the tail contribution at the expense of the adsorbed components. Neverthe- 
less, both lattice and continuum analyses report an essentially linear dependence of 



2360 C A Croxton 

N 

Figure 3. Average length of loops, trains and tails as a function of chain length for terminally 
attached sequences. Full curve: E* = 0; broken curve: E *  = 5. 5 = 0.0625~. 

( Itrain) upon chain length, and moreover appear relatively insensitive to the range of 
E *  investigated (figure 3). 

2.2. Loops 

For purely hard-sphere self-avoiding encounters with a rigid non-attracting plane 
( E *  = 0), the effective entropic repulsion developed between the chain and plane 
predisposes the system towards the formation of tails and against loops and trains, 
particularly the latter. The specification of a loop presumes the existence of one or 
more energetically unfavourable returns to the plane, and consequently the percentage 
of chains in loop form steadily decreases with increasing chain length (figure 2( b ) ) .  
The configurational attrition in forming a loop within a sequence of given length is 
least for loop lengths of minimum and maximum size, and accordingly we anticipate 
that the free energy penalty predisposes the system against the formation of loops of 
intermediate size-a result confirmed in the Monte Carlo analysis reported below. 

With increasing chain-plane attraction however, returns to the plane either in the 
form of singly adsorbed segments or (much less likely) as trains are somewhat more 
highly favoured at the expense of tails and, in conjunction with the local minimum in 
the excess free energy in the vicinity of the boundary, the system is slightly more 
disposed towards the formation of loops (figure 2(b) ) .  Whilst the average size of a 
loop grows steadily with chain length (figure 3) ,  it nevertheless appears relatively 
insensitive to the interaction parameter E * ,  suggesting that over the range of interaction 
investigated, loop size is primarily determined on the basis of geometrical attritional 
considerations. Even so, the loop fraction increases by almost one order of magnitude 
as E* = 0-5 for the longest chain lengths investigated. Monte Carlo simulations ( E *  = 0; 
Croxton 1986a) revealed a bimodal distribution of loop lengths within a given sequence 
length: loops of maximal and minimal size would tend to develop, rather than those 
of intermediate length. This predisposition of the system has been discussed in terms 
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of configurational attrition of the sequence (Croxton 1986a) and results in a progress- 
ive increase in loop size with N. The weakly attracted tetrahedral sequence of La1 and 
Stepto ( E *  = 0.5) coincides closely with our E* = 0 Monte Carlo estimate. For stronger 
attractions, the results of La1 and Stepto and of Higuchi et a1 reveal a very weak 
dependence of ( lloop) upon chain length; the convolution results show a considerably 
stronger, linear dependence upon N, although the dependence is evidently decreasing 
with increasing E * .  As we observed from the outset, the convolution approximation 
is known to reassign train states in favour of loop, and to a lesser extent, tail states. 
This may well account for the unduly strong N dependence since (lloOp) = ~ L l o o p ) / ~ n l o o p ) ,  
and ( nloop)  is consistently underestimated. Thus, whilst the current analysis suggests 
(Iloop) depends linearly upon N for the range of E* investigated, Roe finds an N"* 
dependence which concurs with our Monte Carlo ( E *  = 0) and the lattice-based 
( E *  = 0.5) results. 

2.3. Trains 

The system appears strongly predisposed against the formation of trains over the range 
of E *  investigated, and this is attributed to the negative spatial gradient of the excess 
free energy ( d p l d z )  in the immediate vicinity of the boundary. Whilst for E *  > 1 the 
sequence may form a loose association with the plane as discussed above, nevertheless 
the chain is essentially desorbed and the percentage of chain length decreases rapidly 
with N. In fact, an asymptotic percentage of trains <0.5'/0 appears to be achieved by 
N - 10 over the range of E *  investigated (figure 2(c)). Most interestingly, the average 
length of train appears virtually independent of chain length and increases slightly 
only for the strongest chain-plane attraction (figure 3), concurring with the results of 
La1 and Stepto. Whilst we have emphasised the present approximation underestimates 
(ntrains) in favour of ( ntails)  (defined in equation (8)) ,  trains when they do occur invariably 
consist of one segment only, and so ( Itrain) = ( Ltrain)/( ntrain) remains correctly estimated 
for the range of attractions investigated here. The present convolution estimates and 
the lattice-based and continuum Monte Carlo analyses are in total agreement regarding 
the very weak dependence of (Itrain) upon N and E * .  It is important to realise, however, 
that the criterion for resolution of close encounters with loops and trains will strongly 
influence the apparent behaviour of the system, and this is discussed in some detail 
by Higuchi et a1 (1983). In the present case the width of the zone 5 within which 
segments are considered as adsorbed is 0.0625 of a segment diameter (equation (1)). 
Clearly, a less stringent criterion would regard many of the loop segments as being 
adsorbed, whereupon a certain redistribution of percentages between figures 2( b )  and 
2( c )  would occur, although we find the qualitative modification to be relatively small 
for the narrow range investigated in the Monte Carlo analysis (5 = 0.0078~, 0 .0625~) .  
Nevertheless, the growth in average loop length ( L,oop)/(nloop) (equation ( 8 ) )  with N 
would be partially transferred to the average length of trains. A consideration of the 
Z( Oi I N )  distribution function, however, shows that any qualitative modification of 
these conclusions would require the contact zone Z'( O i )  to be sufficiently broad as 
to include a significant component of the non-contact Z"( Oi )  structure which is more 
highly sensitive to both E *  and N (Higuchi et a1 1983). Notwithstanding these 
observations, we note from figure 2( c )  that the average number of trains ( ntrains) increases 
by almost one order of magnitude as E *  = O +  5 .  

As we have seen, most of the segments of the terminally attached polymer extend 
into the solution phase in the form of tails rather than loops, in agreement with the 
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conclusions of Roe (1965), Cosgrove et a1 (1983) and Cosgrove and Vincent (1986), 
but in direct contradiction to those of Simha et a1 (1953). The thickness (z) of the 
adsorbed layer may be related to the number of links ( N -  1) in the N-mer by an 
exponent relation ( z ) ~  ( N -  1)"'"*' where Y ( E * )  is dependent upon the interaction 
parameter. In figure 4 ( a )  we show a least-squares quadratic fit to the convolution 
data, and form limiting estimates (N+oo) of the exponent v ( E ) * .  We see that the 
exponent steadily decreases with increasing attraction (v(0) - 0.7; 4 5 )  - 0.1) as the 
sequence progressively compacts against the boundary. These results are consistent 
with the conclusions of Silberberg (1962) who found v = 0 for strong attraction (large 
E * )  and with Simha et a1 (1953) who found v = 0.5 for weak attraction. Indeed, our 
MC data (Croxton 1986a) suggest v - 0.5 for the case of zero chain-plane attraction. 
The analysis of Chan et a1 (1975) based on a generating function method for the 
partition function also obtains exponents of 0 and 0.5 for strong and weak attraction, 
respectively. Certainly our estimates of the exponents are slightly higher than those 
of earlier analyses, but this may arise from our inclusion of excluded volume behaviour 
within the sequence, which the others neglect. 

The zero growth in thickness of the boundary layer with increasing attraction reflects 
the lateral spreading of the sequence across the boundary, and this is confirmed both 
by our estimates of the mean square end-to-end distance ( R : N )  and the estimates of 
Chan et a1 which reflect a linear dependence upon N appropriate to a two-dimensional 
lateral spreading of the chain. 
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Again, the results of Higuchi et al reveal the N independence of the mean thickness 
in the case of strong attraction, and they also observe an insensitivity to solvent 
condition. 

A similar exponent analysis (ltai,) cc ( N  - 1) e ( E * )  for the N dependence of the length 
of tails is shown in figure 4 ( b ) ,  whilst the analogous exponent for trains T ( E * )  we find 
to be - 1 , O  for strong and weak attraction respectively, suggesting the existence of a 
critical value of E *  corresponding to adsorption/desorption. This kind of behaviour 
is apparent from the lattice data of La1 and Stepto and is precisely the behaviour 
described by Chan et al. Since Higuchi et a1 report (Itrain) for only their strongest 
chain-plane attraction it is not possible to determine any dependence upon E * .  

However, with the predisposition towards lateral growth rather than normal extension 
from the boundary of strongly attracted sequences, the kind of behaviour observed in 
T ( E * )  is as expected, with energetic and entropic processes dominating the large and 
small E *  behaviour, respectively. 

The exponents Y( E * ) ,  6( E * )  show a systematic decrease in magnitude with increas- 
ing chain length, and for small E* are fully consistent with Roe’s (critical) values of 
Y, = 0.5, 6, = 1.0 and 7, = 0. Roe identifies the critical condition as one for which a 
weak chain-plane attraction counters entropic repulsion at the plane, yielding a zero 
excess free energy. We have shown elsewhere (Croxton 1983) that the excess free 
energy is zero in the immediate vicinity of the boundary for E *  - 0.5 on the basis of 
the present interaction (equation (9)), corresponding to weak chain-plane attraction. 

We see that the competing agents of energy (adsorption) and entropy (desorption) 
cancel at the boundary for E *  -0.5. We cannot, however, identify a unique ‘theta 
point’ at which exclusion and attrition processes cancel throughout the system as, for 
example, has been assumed by Silberberg (1962) in making a uniform assignment of 
-k In 2 to the entropy of adsorption per segment. 

Roe does, however, find a critical value of the interaction parameter for which a 
half-power law is obeyed: v = 0.5. We find that for 1 > E *  > 0.5 the thickness of the 
adsorbate does obey a half-power law as Chan et a1 (1975) also found. It should be 
remembered that the analyses of Roe (1965a, b), Chan et a1 (1975), Silberberg (1962) 
and Simha et a1 (1953) neglect self-interference within the chain, resulting in substan- 
tially more consolidated structures at the boundary. It follows that critical behaviour 
is contingent upon cancellation of energy and entropy effects at the boundary whilst 
for the relatively more expanded structures reported here that a net cancellation over 
the thickness of the adsorbate represents the closest approach to critical behaviour. 
Incidentally, the consolidation of boundary structures in the absence of excluded 
volume concurs with McCracken’s (1967) results based upon computations of ter- 
minally attached chains with attractive segment-surface interactions. Finally, in figure 
5 we show the development of the mean sizes of loops, trains and tails for a self-avoiding 
chain, terminally attached to a rigid plane, as a function of length and chain-plane 
attraction. The results appear qualitatively similar to previously obtained excluded 
volume (La1 et a1 1975) and random walk (Roe 1965a) sequences in the adsorbed 
states. The mean length of loops and tails exhibits an essentially linear decrease with 
increasing chain-plane attraction, whilst the size of trains shows a very gradual increase. 
For very strong attractions the loop and tail curves must asymptotically approach the 
train curve which ultimately must increase. However, entropic processes at the boun- 
dary will ensure that there will always remain loop and tail components, even for the 
strongest attractions. 
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Figure 5. Average lengths of loops, trains and tails for a self-avoiding terminally attached 
sequence of thirteen segments as a function of chain-plane attraction. 

2.4. Monte Carlo resolution of boundary structures 

Unfortunately no strictly comparable Monte Carlo simulations are available with which 
to compare the results of the convolution approximation. Features associated with 
the continuum nature of the sequence and the use of continuous interaction functions 
obviously cannot be tested on the basis of the lattice statistics of La1 and Stepto. The 
continuum Monte Carlo analysis of Higuchi et al, whilst appropriate to the present 
investigation, is nevertheless somewhat preoccupied with the effect of the adsorption 
criterion 5 upon the resolution into loop, train and tail components rather than their 
dependence upon N and E * .  A detailed MC analysis of terminally attached sequences 
as a function of ( N ,  E * )  is not yet available, although discussion in terms of the E* = 0 
results is possible (Croxton 1986a). 

This latter investigation revealed that the short range segment density distribution 
p(  z I N )  normal to a rigid boundary shows a rapid rise, falling discontinuously at z = 1. 
This suggests that the resolution of adsorbed sequences will be sensitively dependent 
upon the contact criterion. Accordingly we investigate two values for the contact zone: 
[ = 0.0078~ and 0.0625~. Clearly, the former represents a more stringent criterion of 
adsorption than the latter. (For a detailed appraisal of the 5 dependence, see Higuchi 
et a1 (1983).) 

On the basis of these criteria, all successful configurations generated in the course 
of the simulation were resolved into loops, trains and tails. The mean length 
dependence upon N for each classification is shown in figure 6 from which we conclude 
that the mean lengths are relatively insensitive to the current range of contact criteria. 
Comparison with the calculated quantities (figure 3) is in good agreement with tails 
and trains ( E *  = 01, though the MC loops appear to show a rather weaker N dependence. 

Assuming exponent relations of the form 

(~,oops) - ( N  - 1)' 
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N 

Figure 6. Monte Carlo estimates of the mean length dependence of loops, trains and tails 
upon N (cf figure 3; E *  = 0, based on the convolution approximation). Full curve: Monte 
Carlo; broken curve: convolution. 5 = 0 . 0 6 2 5 ~ ~  

we find from a least-squares quadratic fit to the MC data 6 = 0.57, T =  0.00 and 19 = 1.00. 
These values are in reasonable agreement with the values estimated on the basis of 
the convolution approximation, except for the loop component, and are consistent 
with Roe's (critical) estimates for a random flight sequence weakly attracted to a 
boundary (ec= 0.5, T~ = 0.0, 6, = 1.0). 

The fractional distributions of loops, trains and tails within the sequence as a 
function of chain length are shown in figure 7 ,  and are seen to be in reasonable 
quantitative agreement with the calculated estimates (figures 2(a, b, c); E* = 0). Clearly 
there is a strong predisposition against the formation of trains which we attribute to 
entropic effects associated with configurational attrition in the vicinity of the boundary. 
Trains, if they occur at all, are rarely more than one link in length regardless of chain 
length, and the bound fraction decreases rapidly with N (cf figure 2 ( c ) ) .  Attrition in 
the number of chain configurations with adsorption of a single segment increases 
dramatically with the length of the sequence, and the associated free energy penalty 
ensures a decreasing fraction in the form of trains with increasing N. We note from 
figure 2( c) that even for relatively strong segment-boundary attractions ( E *  = 5 )  the 
development of trains, whilst increased with respect to E *  = 0, nevertheless constitutes 
a subordinate component of the possible boundary structures. 

Desorbed sequences in the form of loops and tails clearly represent the preferred 
configurations at the boundary, particularly the latter which account for over 95% of 
the observed structure ( E *  = 0, figures 2( a )  and 7 ) ;  these desorbed configurations derive 
from the segment-boundary entropic repulsion. We find that loops of maximal and 
minimal length are more probable than those of intermediate length within a given 
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Figure 7. Monte Carlo estimates (0) of the fractional components of loops, trains and 
tails as a function of chain length (cf figure 2; E *  = 0, based on the convolution approxima- 
tion). 5 = 0.0625~. 

sequence, and this is characteristic of all chain lengths simulated. The return of an 
intermediate segment to the plane effects a relatively greater attrition of chain configur- 
ations than does a return at either end of the sequence. Given the overall predisposition 
toward the formation of tails, short loops are favoured with respect to those of larger 
size. It may well be that this unusual bimodal distribution of loop lengths is partially 
responsible for the poor estimate of the N dependence of (I,,,,) on the basis of the 
convohtion approximation (figure 3). 

We see from figure 7 that the fraction of the sequence in loop form decreases with 
increasing chain length for precisely the same reason as for trains, although somewhat 
less strongly. 

As we anticipated in the introduction, the nature of the convolution segment density 
distribution pc( z I N )  implies a depletion of states in the vicinity of the boundary (loops 
and trains) in favour of desorbed sequences. Just this reassignment of states is apparent 
from the component breakdown (figure 7 )  when compared with the Monte Carlo 
distribution. Clearly, the fraction of the chain in tail form is overestimated at the 
expense of the loop and train components, though good quantitative agreement is 
nevertheless obtained on the basis of the c approximation. Whilst we might expect 
some improvement using the iterative (IC) procedure, such calculations would be 
prohibitively time-consuming. 
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